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We propose a one-dimensional nonlocal stochastic model of adsorption and
desorption depending on one parameter, the adsorption rate. At a special value
of this parameter, the model has some interesting features. For example, the
spectrum is given by conformal field theory, and the stationary non-equilibrium
probability distribution is given by the two-dimensional equilibrium distribution
of the ice model with domain wall type boundary conditions. This connection is
used to find exact analytic expressions for several quantities of the stochastic
model. Vice versa, some understanding of the ice model with domain wall type
boundary conditions can be obtained by the study of the stochastic model. At
the special point we study several properties of the model, such as the height
fluctuations as well as cluster and avalanche distributions. The latter has a long
tail which shows that the model exhibits self organized criticality. We also find
in the stationary state a special surface phase transition without enhancement
and with a crossover exponent f=2/3. Furthermore, we study the phase
diagram of the model as a function of the adsorption rate and find two massive
phases and a scale invariant phase where conformal invariance is broken.

KEY WORDS: Growth models; avalanches; conformal field theory; loop
models; alternating sign matrices.

1. INTRODUCTION

The structure of growing interfaces is a subject of major interest and a
characterization of the various universality classes of critical behavior is an



open question. (1) We present a one-dimensional adsorption-desorption
model of a fluctuating interface (see Section 2), which belongs to a new
universality class. (Part of the results presented in this paper were
announced in ref. 2). In this model, that we call the raise and peel model
(RPM), the interface follows Markovian dynamics. The adsorption is local
(it ‘‘raises’’ the interface) but in the desorption process, part of the top
layer of the interface evaporates (one ‘‘peels’’ the interface). The relaxation
rules are such that the desorption process takes place through avalanches
which have a long tail in their probability distribution function (PDF). The
RPM therefore shows self-organized criticality (SOC). (3–5) In Section 2 we
compare in detail the RPM with the Abelian sand pile model (ASM) and
with other growth models. In this section we also define tiles, terraces and
clusters which we will use to characterize the interface.

What makes our model special is that for a fine tuning of the adsorp-
tion and desorption rates the model is solvable. Namely, the Hamiltonian,
which describes the time evolution of the system, is given by a sector of an
XXZ quantum chain. (6, 7) The spectrum of the Hamiltonian can be obtained
using the Bethe Ansatz (8) and is given by a c=0 logarithmic conformal
field theory (LCFT) (9) (c is the central charge of the Virasoro algebra). This
implies that the dynamic critical exponent z=1. The connection between
the RPM and LCFT was presented elsewhere. (7) LCFT appears also in
other domains of physics such as systems with quenched disorder and the
quantum Hall effect, (10) lattice models with N=2 supersymmetry (11) and
possibly string theory. (12) Once the proper observables are identified the
existence of a LCFT behind the stochastic process allows in principle to
find the correlation functions of the stochastic process.

The model is special also for a second reason which will take us into
the world of combinatorics. The stationary PDF of the system with open
boundary conditions is given in terms of weighted restricted solid-on-solid
(RSOS) paths. Since there is no detailed balance in the stochastic process
we expect it to describe a state ‘‘far away from equilibrium.’’ A number of
mathematical conjectures and theorems will allow us to show that in fact
the PDF can be understood as an equilibrium PDF defined on a special
two-dimensional grid. It turns out that there exists a conjecture (6) (conjec-
ture I) that the properly defined normalization factor of the PDF coincides
with the number of vertically symmetric alternating sign matrices. (13, 14)

Alternating sign matrices are an important research topic in combina-
torics. (15) There is a bijection between vertically symmetric alternating sign
matrices and the ice model (16) defined on a rectangle with special boundary
conditions. (14) Another bijection relates the ice model with special boundary
conditions to a fully packed loop model (FPLM). (17–19) A second conjecture
(conjecture II) states that the weight of an RSOS path in the PDF of the
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stationary state of our model is given by the number of FPLM configura-
tions with the same topology. (7, 20) (In Section 3 we will review these topics).
We would like to mention that in combinatorics it takes time to prove
conjectures.

The conclusion of this chain of arguments is that the weighted RSOS
paths in the expression of the PDF of the stationary state can be under-
stood as a uniform PDF in terms of FPLM configurations for which one
can use thermodynamics. We will make use of this possibility in Section 5.
Moreover, the connections between the stationary state of our interface
model, the ice model with special boundary conditions and alternating sign
matrices allows to gain new insights also in the last two topics where there
are many open questions (21, 22) and few facts are known about correlation
functions. (23, 24)

‘‘Nice’’ combinatorial objects (the alternating sign matrices are an
example) have the magic property that various quantities have simple
product expressions. Looking at a few cases one can conjecture exact
expressions. The number of alternating sign matrices was such an
example (15) which took some time to be proved. In the next sections several
conjectures will be presented and we will study their physical relevance.

In Section 4 we give a conjecture (conjecture III) for the average size
of the terraces and study numerically the size dependence of the average
height and width of the interface.

Section 5 contains a recent conjecture (conjecture IV) about the prob-
ability to have k clusters in the stationary state for a system of size L. We
introduce a fugacity z associated to k and study the thermodynamic poten-
tial of the ensemble of clusters. The thermodynamic potential shows the
correct convexity properties, which is a test for the correctness of the
conjecture. Moreover, one obtains a phase transition from a phase with a
zero density of clusters (small values of z) to a phase with a finite density
of clusters ( large values of z). The phase transition takes place when the
fugacity is equal to 1. This implies that one has a special surface phase
transition (25) without needing an enhancement (z > 1) for the number of
clusters. To our knowledge this phenomenon was not seen for other
systems. (26–28) One also finds a crossover exponent (25) f=2/3. Since the
endpoints of clusters are given by what are usually called contacts, from
the value of f we determine the critical exponent related to the contact-
contact two-point function.

In Section 6 we study the production of avalanches in our model. We
give a conjecture (conjecture V) for the probabilities to have an adsorption
or a desorption event for different system sizes. We also study numerically
the moments of the PDF for desorption processes with different tile
numbers (avalanche sizes). We show that for large systems the PDF has
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a divergent dispersion i.e., the PDF shows a long tail. This shows that our
model is in the SOC class.

Section 7 deals with the RPM when one changes the value of the ratio
of the adsorption and desorption rates away from 1. No analytical methods
are known for this new situation. We therefore have numerically diago-
nalized the Hamiltonian and used finite size scaling in order to understand
the phase structure.

Lastly, in Section 8, we present our conclusions in which we try to
convince the reader that in spite of the fact that the model was not inspired
by a particular physical phenomenon, it has many remarkable properties
bringing together different aspects of physics and mathematics.

2. THE MODEL

We consider an interface of a one-dimensional lattice of size L+1
(L=2n). The non-negative heights hi obey the restricted solid-on-solid
(RSOS) rules,

hi+1 − hi= ± 1, h0=hL=0, hi \ 0. (1)

Alternatively, one can describe the interface using slope variables si=
(hi+1 − hi − 1)/2, (i=1,..., L − 1). In order to characterize the interface, we
give some useful definitions. A segment of a configuration with endpoints
at the sites a and b is defined by the conditions: ha=hb=h and hj > h for
a < j < b. If h=0, the segment is called a cluster. A terrace is an interval
where the slopes are zero for all the sites.

There are Cn=(2n)!/((n+1)(n!)2) possible configurations of the
interface. In Fig. 1 we show a configuration for n=8, (L=16). This con-
figuration has two clusters, a terrace of length one separating the two
clusters, one terrace of length one at the peak of the first cluster and a
terrace of length five inside the second cluster.

The dynamics of the interface is described in a transparent way in the
language of tiles (tilted squares) which cover the area between the interface

Fig. 1. A configuration of the interface with two clusters.
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and the substrate (h2i=0, h2i+1=1, (i=0,..., n)). There are six tiles in the
first cluster in Fig. 1 and three in the second.

We consider the interface as separating a film of tiles deposited on the
substrate, from a rarefied gas of tiles. We are interested to find the evolu-
tion of the interface toward the stationary state and to study the properties
of the interface in this state.

The evolution of the system in discrete time (Monte-Carlo steps) is
given by the following rules. With a probability Pi=1/(L − 1) a tile from
the gas hits the site i, (i=1,..., L − 1). Depending on the value of the slope
si at the site i, the following processes can occur:

(i) si=0 and hi > hi − 1. The tile hits a local peak and is reflected.

(ii) si=0 and hi < hi − 1. The tile hits a local minimum. With a
probability ua the tile is adsorbed (hi W hi+2) and with a probability 1 − ua

the tile is reflected.

(iii) si=1. With probability ud the tile is reflected after triggering the
desorption of a layer of tiles from the segment hi+b=hi, i.e., hj W hj − 2 for
j=i+1,..., i+b − 1. This layer contains b − 1 tiles. With a probability
1 − ud, the tile is reflected and no desorption takes place.

(iv) si=−1. With probability ud the tile is reflected after triggering
the desorption of a layer of tiles belonging to the segment hi − b=hi, i.e.,
hj W hj − 2 for j=i − b+1,..., i − 1. With a probability 1 − ud the tile is
reflected and no desorption takes place.

In our model the adsorption, which occurs on terraces, is local but the
desorption is not. To illustrate how the desorption takes place, we show in
Fig. 2 the layer of tiles which is desorbed after a tile has hit the site 1, there
are 5 tiles desorbed. The same tiles are desorbed if the incoming tile would
have hit site 7. Desorption takes place within one cluster. We notice that
the number of tiles removed through desorption (this number is always
odd) can be of the order of the system size L and therefore one can
conclude that in our model the desorption takes place through avalanches.

1 2 3 16

Fig. 2. A desorption event. The incoming tile at site 1 triggers an avalanche of 5 tiles, which
are shaded. All of the shaded tiles are removed in the desorption event.
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Before discussing the physics of the model, we give the rates for the
continuous time evolution of the interface. At the local minima of the
interface, adsorption (hi W hi+2) takes place with a rate u=ua/ud.
Desorption of a segment ha=hb, i.e., hj W hj − 2 for a < j < b, takes place
with a rate,

d(sa − 1)+d(sb+1). (2)

The rate u is the single free parameter in the model.
The Hamiltonian H which gives the time evolution in the vector space

of RSOS configurations, has matrix elements Hcd=−rcd, where rcd are the
rates for the transitions d Q c given above (;c Hcd=0). The unnormalized
probability Pc(t) to find the system in the configuration c at time t is given
by the imaginary time Schrödinger equation,

d
dt

Pc(t)=−C
d

HcdPd(t). (3)

Since H is an intensity matrix, it has a zero eigenvalue with a trivial bra
and a nontrivial ket which gives the probabilities in the stationary state,

O0| H=0, O0|=(1, 1,..., 1),

H |0P=0, |0P=C
c

Pc |cP, Pc=lim
t Q .

Pc(t).
(4)

In most of this paper we will consider u=1, Section 7 being an exception.
As we are going to show in Section 6, our model for u=1 is of the

SOC class (self-organized criticality). We here anticipate some results and
compare the present model with the Abelian sandpile model (ASM) of Bak,
Tang and Wiesenfeld (3) which is a paradigm for SOC:

(i) In the stationary state of the RPM the balance is obtained when
the number of tiles adsorbed on the film of tiles on the substrate is equal to
the number of tiles desorbed. In the ASM the balance is obtained when the
number of grains of sand adsorbed on the film of sand is equal to number
of grains that leave the film through the boundary.

(ii) The heights in the RPM can be of the order of the system size
(see Section 4) therefore the RPM can also be viewed as a growth model.
The heights are finite in ASM.

(iii) The RSOS paths of the RPM correspond to the recurrent con-
figurations of the ASM. While through toppling one configuration of ASM
is taken into one other configuration only, in the RPM one configuration
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can go, with different probabilities, into several configurations. One should
add that in the ASM, topplings give a simple physical interpretation for the
avalanches. There is not yet a simple physical mechanism for desorption
transitions in the RPM.

(iv) The ASM is not critical in d=1, (29) but it is in d=2. (30) In both
dimensions the stationary probability distribution is uniform in the space
of recurrent states. The d=1 RPM is critical, the stationary probability
distribution in RPM is not uniform in the space of RSOS paths (see
Section 3).

(v) The 2+1 (2 space, 1 time) dimensional ASM has a dynamic
exponent z=2 (31, 32) and the stationary 2-d probability distribution descri-
bes a critical system with correlation functions given by a c=−2 LCFT. At
u=1 the 1+1 RPM has a dynamic exponent z=1 and the spectrum of the
Hamiltonian is given by generic characters of a c=0 LCFT. The nonuni-
form stationary probability distribution in the space of RSOS paths can be
obtained by making a correspondence to the 2-d ice model with special
boundary conditions (see Section 3). What is therefore common to the two
models is that that the stationary probability distributions which describe
phenomena ‘‘far away from equilibrium’’ are given by 2-d equilibrium
systems.

(vi) Avalanches can be studied if one perturbs the system near the
stationary state. For the ASM the average size of the avalanche diverges
with the size of the system, whereas it stays finite for the RPM. This is true
for at least a large range of values of the parameter u. The explanation is
simple. We denote by Pa the probability to have adsorption and by Pd the
probability to have desorption and take into account that one adsorbs only
one tile. The average number of tiles desorbed is,

OTP=
Pa

Pd
, (5)

which is finite unless Pd vanishes as L Q .. At u=1 the probability dis-
tribution function for an avalanche of a certain size has an algebraic fall-
off implying that one has relatively large probabilities to produce large
avalanches (see Section 6). This is typical for SOC.

Since the RPM is also a model for interface growth it is interesting to
compare it with other models of this kind. For example in the Rouse model
of polymer dynamics, (33) adsorption (desorption) takes place at the local
minima (maxima) with the same rate. One has detailed balance, z=2 and
the stationary state is given by a uniform PDF of RSOS paths. This is

The Raise and Peel Model of a Fluctuating Interface 7



a PDF for a directed polymer model (DPM), for which the average height
Oh̄P increases like L1/2. (34) A modification of the Rouse model by Koduvely
and Dhar (35) has local rates and detailed balance but includes also adsorp-
tion (desorption) rates depending on the next nearest neighbor heights. In
this model one finds an increased value of z (z % 2.5), the average height
and the width being of the order of L1/2. As we are going to see, in the
RPM we do not have detailed balance, locality is lost, and at least for u=1
one has z=1 and the heights and widths increase logarithmically with the
size of the system.

3. RSOS, LOOP, AND SIX-VERTEX CORRESPONDENCE

In this section we make the connection between our model and the
dense O(1) or Temperley–Lieb loop model, (36, 37) and we review the con-
jectured relation of the stationary state to a model of fully packed loops on
a rectangle. This connection enables us to interpret the non-equilibrium
stationary state as an equilibrium PDF.

Each RSOS path of the RPM corresponds to a ‘‘boundary diagram’’
of loops (38) in the following way. On each RSOS path, draw the equal
height contour lines, as in Fig. 3a. By straightening out the surface, keeping
the contour lines and rotating the picture around the horizontal axis, we
obtain Fig. 3b. The contour lines connect pairs of sites and Fig. 3b thus
defines a link pattern (boundary diagram).

The RPM was inspired (2) by a stochastic model on the link patterns,
called the dense O(1) or Temperley–Lieb loop model (TLLM). Namely, for
u=1 the Hamiltonian of the RPM can be rewritten as

H= C
L − 1

j=1
(1 − ej), (6)

where the ej satisfy the Temperley–Lieb relations

e2
j =(q+q−1) ej, ejej ± 1ej=ej, ejek=ekej for | j − k| > 1, (7)

with q=exp(ip/3). We remark here that the ej admit a representation in
terms of Pauli spin matrices. In that representation, the Hamiltonian (6)

↔
Fig. 3. An interface with contour lines and the corresponding link pattern.
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becomes that of the quantum XXZ spin chain with diagonal boundaries. (39)

This model is integrable and quantities such as the conformal scaling
exponents can be calculated exactly, for example using Bethe Ansatz
techniques. (8)

The ej can be pictorially represented by,

ej  =

1 2 j – 1 j j + 1 j + 2 L – 1 L

(8)

The action of ej on a link pattern of contour lines is given by placing
the graph of ej underneath that of the link pattern and removing the closed
loops and the intermediate dashed line. They allow one to remove closed
loops and contract links in composite pictures. The action of e1 on one of
the link patterns for L=6 (corresponding to a desorption event) is for
example given by,

= (9)

As an example we calculate the Hamiltonian for L=6 on the five
basis states,

1 :

2 :

3 :

4 :

5 :

(10)

and we find,

H= −R
− 2 2 2 0 2

1 − 3 0 1 0
1 0 − 3 1 0
0 1 1 − 3 2
0 0 0 1 − 4

S (11)
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In the basis (10) the stationary state |0P of H is given by

|0P=(11, 5, 5, 4, 1). (12)

Here we have chosen the smallest element to equal 1. Using the definitions
in (4) we therefore find the normalization factor to be O0 | 0P=26. Below
we show that the normalization acquires an extra meaning from an enu-
meration problem.

The RPM model for u=1 is thus equivalent to the Temperley–Lieb
loop (TLLM) model. For the TLLM the surprising observation was
made (6) that the normalization of the stationary state is equal to the parti-
tion function of an equilibrium statistical mechanics system (conjecture I).
This observation has deeper consequences which we will now briefly
review.

For this purpose we consider a six-vertex model on a (L − 1) × L/2
rectangle with boundary conditions such that the arrows on the sides all
point inward and those on the bottom boundary all point outward (domain
wall boundary conditions (40)). The arrows on the top boundary alternate,
see for example Fig. 4. The six-vertex configurations are in one to one cor-
respondence with horizontally symmetric alternating sign matrices (13, 14) and
can also be reformulated as configurations of a fully packed loop model
(FPLM) (17–19).

The six-vertex configurations on the square lattice can be transformed
into fully packed loop (FPL) configurations. FPL configurations are con-
figurations of paths such that every site is visited by exactly one path. We
divide the square lattice into its even and odd sub-lattice denoted by A and
B respectively. Instead of arrows, only those edges are drawn that on sub-
lattice A point inward and on sub-lattice B point outward, see Fig. 5.

Fig. 4. A 5 × 3 rectangle with domain wall boundary conditions on the left, right and
bottom boundary and alternating arrows at the top boundary.
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A

B

Fig. 5. FPL vertices on sub-lattices A and B derived from the six arrow vertices.

We take the vertex in the upper left corner to belong to sub-lattice A.
The special six-vertex boundary condition translates into a boundary con-
dition for the loops. Paths either form closed loops, or begin and end on
boundary sites which are prescribed by the boundary in- and out-arrows on
sub-lattice A and B respectively. In this way it can be seen that the six-
vertex configurations on the rectangle in Fig. 4 are in one to one corre-
spondence with FPL configurations on the grid in Fig. 6, see also Appendix A.

The paths that start and end on boundary sites (we disregard the
closed loops in the bulk) define a link pattern in the same way as did
the Temperley–Lieb loops. There is an interesting connection between the
coefficients of the stationary state of the Hamiltonian of our model at
u=1, or equivalently the Hamiltonian as given by (6), and the enumeration

Fig. 6. FPL grid corresponding to Fig. 4
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Fig. 7. The 26 FPL diagrams for L=6. The 11 diagrams corresponding to link pattern 1 in
(10) are printed bold.

of FPL configurations on the rectangular grid: the link patterns in the sta-
tionary state of the TLLM and those in the FPLM appear with the same
probability (7, 20) (conjecture II). Take for example the stationary state for
L=6 given by (12). The FPL configurations on the 5 × 3 rectangle are
shown in Fig. 7. Their total number is 26, which is the sum of the integers
in (12), and they can be categorized according to the five link patterns
given in (10). One finds that the number of diagrams corresponding to link
pattern 1 is 11 (these are printed bold in Fig. 7), to link pattern 2 is 5, to
link pattern 3 is 5, to link pattern 4 is 4 and to link pattern 5 is 1.

We have just illustrated for L=6 the connection between the coeffi-
cients of the stationary state of the TLLM written in the basis of link pat-
terns and the number of configurations of the FPLM with that same link
pattern. The connection between the stationary state and this enumeration
problem has many consequences. For example, on a conceptual level, one
understands a stationary state ‘‘far from equilibrium’’ as an equilibrium
PDF. Also, the scaling properties of the RPM and the critical properties of
the FPLM are related to the scaling dimensions of an LCFT. Furthermore,
exact results obtained by studying the properties of the enumeration problem
can be used to calculate stationary correlation functions and expectation
values.
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The number of six-vertex configurations on a (L+1) × (L+1) square
with domain wall boundary conditions that are invariant under reflection
in the horizontal symmetry axis is equal to that of the (L − 1) × L/2 rec-
tangle with the special boundary condition, see Fig. 4. The total number of
such configurations is known and is equal to the number of (L+1) ×
(L+1) horizontally symmetric alternating sign matrices (in existing litera-
ture more commonly denoted as vertically symmetric alternating sign
matrices) which is given by, (14)

AV
2n+1=D

n − 1

j=0
(3j+2)

(2j+1)! (6j+3)!
(4j+2)! (4j+3)!

, L=2n. (13)

The leading asymptotic terms of AV
2n+1 are given by

ln AV
L+1=s0(L − 1) L/2+1 s0 −

1
2

ln 22 (L − 1)

−
5

144
ln L2+O(1), s0=ln

3 `3

4
, (14)

where s0 is the entropy per site. The first term in (14) is proportional to the
area of the rectangle. In Appendix A we show that the second term in (14)
is a surface contribution coming from the top boundary, and not from the
other sides of the rectangle. This observation is important for the under-
standing of Section 5. The surface contribution turns out to be related to a
string expectation value.

4. TERRACES AND HEIGHTS IN THE STATIONARY STATE

We now consider, from the point of view of growth models, various
quantities which characterize the interface in the stationary state. In this
section we look at the terraces and heights and in the next section we will
consider clusters. This separation is due to the fact that there exists a
conjecture for the cluster PDF and we will be able to study in detail the
properties of the ensemble of clusters. In Section 6 we will consider the
same interface from the point of view of SOC.

One can make (43) a conjecture (conjecture III) for the fraction of the
interface covered by terraces for a system of size L,

yL=
1

L − 1
C

L − 1

j=1
O1 − |sj |P=

3L2 − 2L+2
(L − 1)(4L+2)

. (15)

The Raise and Peel Model of a Fluctuating Interface 13



This conjecture was verified up to L=18. Eq. (15) implies that for large L,
three quarters of the interface is covered with terraces. On a terrace, half of
the sites correspond to local minima where adsorption can occur and one
half to local maxima where only reflections can occur. Desorption cannot
occur on terraces. This allows us to make an estimate of the ratio of the
probabilities to have adsorption respectively desorption: asymptotically
Pa/Pd=3/2. This relation is obtained in a different way in Section 6 from
another conjecture. The fact that the results coincide is reassuring.

The average height Oh̄P and interface width w, which characterizes the
roughness of the surface in the stationary state, have the following defini-
tions,

hm=
1
L

C
L

i=1
Nhi/2Mm, w=`Oh2 − h̄2P, (16)

Obviously h̄=0 for the substrate.
We analyzed the behavior of the heights using exact data up to L=18.

For L=18 the average height has only the value Oh̄P % 0.28, which implies
that the average height increases very slowly with the size of the system.
We therefore assumed the following behavior,

Oh̄P=a ln L+b, (17)

and solved for a and b for data points corresponding to L − 2 and L. The
results for successive pairs of data points are given in Table I. The fact that
the values of a and b do not change much suggests that indeed (17) may be
correct. In Fig. 8 we plot the values of Oh̄P as a function of ln L together
with the fit (17) using the values for L=18 of Table I. We obtained less
convincing data when fitting the heights to power laws.

Table I. Heights

L a b

6 0.126477 − 0.092001
8 0.128676 − 0.095941

10 0.129859 − 0.098400
12 0.130643 − 0.100206
14 0.131225 − 0.101653
16 0.131686 − 0.102870
18 0.132067 − 0.103924
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0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

1.6 1.8 2 2.2 2.4 2.6 2.8 3

〈h 〈–

ln L

Fig. 8. The L dependence of the average height for L=6, 8,..., 18. The curve is given by
Oh̄P=0.132 ln L − 0.104.

Doing a similar analysis for the widths we find that our data are
compatible with,

w ’ (ln L)0.35(5). (18)

Because of the logs the formulae given in (17) and (18) are probably
not the last word. What is certain is that the height and the width grow
slowly with the size of the system implying that the surface is only margi-
nally rough. H. Hinrichsen and L. Sittler (44) used Monte Carlo simulations
for our model to obtain the Family–Vicsek (45) scaling function for large
lattices, finding,

exp(w(L, t)2) ’ Lcf(t/L), c=0.192 ± 0.010. (19)

They confirm in this way that z=1 and that the width increases logarith-
mically with L as in (18). They also found that in the stationary state w2

stays of the order of 1 when L varies between 16 and 65536.
It is interesting to mention that marginally rough surfaces (with

z=1.581 corresponding to the directed percolation universality class) were
also encountered (46, 47) at a critical point dividing a moving rough KPZ
phase from a smooth, massive phase.
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5. THE ENSEMBLE OF CLUSTERS IN THE STATIONARY STATE

An obvious geometric observable to characterize a configuration of
the interface is the set of sites j (j even) for which hj=0 (the sites 0 and L
always belong to this set). These sites are also called contact points. This
set is for example important to study the desorption, since two consecutive
points in this set are the endpoints of a cluster and as discussed in Section 2
desorption takes place within one cluster only. For this set one can define
various correlation functions. Here we will be mainly interested in the
number of clusters which is defined by

k= C
n

r=1
d(h2r). (20)

As explained in Section 3, to each interface, or each RSOS path, corre-
sponds a set of FPL diagrams. The clusters in the RSOS paths can be easily
identified in the FPL diagrams and we will take (20) also as a definition of
the clusters on FPL diagrams. The set of contact points in the interface
where hj=0 maps to a corresponding set on FPL paths, see e.g., Fig. 9.

We consider the partition function

ZFPL
n (z)= C

FPL cfgs.
zk, (21)

where the summation is over FPL configurations on the (L − 1) × L/2 rec-
tangular grid (L=2n), see Section 3, and z=em where m is a chemical
potential (or a magnetic field). Because of the RSOS-FPL connection, the
two dimensional partition function ZFPL

n (z) can also be computed in terms
of weighted RSOS paths. It is interesting to notice that the partition func-
tion ZDPM

n (z) for unweighted RSOS path corresponding to the stationary

~

Fig. 9. An interface for L=8. The contact points 0, 2, 6, and 8 are denoted by × . One of
the corresponding FPL diagrams, with the same contact points, is shown on the right. The
three clusters it contains are shaded.
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state of the Rouse model (RM) (33) is known (48) and it was used to describe
the surface critical behavior in the directed polymer model (DPM). To see
the effect of weighted RSOS paths we will compare our results in the
following to those obtained in the DPM.

Let us define Pn(k) as the probability to have k clusters for a system of
size L=2n. The partition function (21) can then be written as

ZFPL
n (z)=Pn(z) AV

2n+1, (22)

where AV
2n+1 is given by (13) and

Pn(z)= C
n

k=1
Pn(k) zk, Pn(1)=1. (23)

The thermodynamic potential is given for large n by,

WFPL(z, n)=−ln ZFPL
n (z)=W(z, n) − ln AV

2n+1. (24)

The leading asymptotics of the last term in (24) are given in (14), and do
not affect the critical properties of the ensemble of clusters. The average
number of clusters, its second moment and the pressure can be derived
from W(z, n) via,

OkP= − z
“

“z
W(z, n), (25)

Ok2P−OkP2= −1z
“

“z
22

W(z, n), (26)

p= −
1
2n

W(z, n), (27)

In order to compute the thermodynamic potential, one needs the expres-
sion for Pn(k). There is a conjecture for this expression (49) (checked up to
L=18) and its proof is an open combinatorial problem. Let us mention
that some time ago the expression of AV

2n+1 was also a conjecture which was
subsequently proved. In the present paper we will accept the conjecture for
Pn(k) and study its consequences for the physics of the ensemble of clus-
ters. This study will give an indirect confirmation of the conjecture since
convexity properties of the thermodynamic potential are satisfied.
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5.1. A Conjecture for Pn(k)

In ref. 49 the following conjecture (conjecture IV) for Pn(k) was made,

Pn(k)=k
4n+k

27n

(1/2)n+k

(1/3)2n

(3n+2)! (2n − k − 1)!
n! (n − k)! (2n+k+1)!

, (28)

where we have used the Pochhammer symbol (a)n=C(a+n)/C(a). The
partition function (23) can now be rewritten as,

Pn(z)=AnzFn(z), (29)

where,

An=
22n − 1

27n

(1/2)n

(1/3)2n

(3n+1)!
n!(n+1)! (2n − 1)

, (30)

Fn(z)=3F2
R2, 1 − n, n+3/2

2 − 2n, 3+2n
; 4z2 . (31)

Here we have used the definition (see, e.g., ref. 50) of the hypergeometric
function

3F2
Ra1, a2, a3

b1, b2

; z2= C
.

k=1

(a1)k (a2)k (a3)k

(b1)k (b2)k k!
zk. (32)

Using Eqs. (25) and (29) we get,

OkP=1+z
F −

n(z)
Fn(z)

. (33)

5.2. The Thermodynamic Potential of the Ensemble of Clusters

To derive thermodynamic potential we have to find the asymptotics
of Fn. This can be achieved by starting with the hypergeometric equation
(see, e.g., ref. 50) satisfied by Fn,

D(D+1 − 2n)(D+2+2n) Fn(z)=4z(D+2)(D+1− n)(D+3/2+n) Fn(z),
(34)

where D=zd/dz. We will need to distinguish the cases z < 1 and z > 1.
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• z < 1. For small z we expect Fn to grow as a polynomial in n.
Keeping only the terms with coefficients proportional to n2 in (34) we get

F −

n(z)=
2

1 − z
Fn(z). (35)

It is clear that our assumption on Fn is consistent with (35) for z < 1. Using
(33) we find for the average number of clusters,

OkP=
1+z

1 − z
(z < 1). (36)

• z > 1. For large z the main contributions will come from terms
proportional to zn and thus F −

n ’ nFn. From Eqs. (33) and (34) we can
derive the following equation for OkP in the limit n Q .,

(4z − 1)(D2OkP+3(OkP− 1) DOkP+(OkP− 1)3)=4n2(z − 1)(OkP− 1), (37)

which has the following solution

OkP== z − 1
4z − 1

L (z > 1). (38)

Comparing the expressions (36) and (38) for the number of clusters, one
notices that the density of clusters r=OkP/L vanishes for z < 1 as L Q .

(one has few large clusters) and stays finite for z > 1 (one has many small
clusters). This implies that z=1 is the critical point of a special surface
transition. (25) It is interesting to note that for the DPM the critical value of
the fugacity is zc=2 and not zc=1 as in our model. The reason is simple:
the critical point marks the appearance of a finite density of clusters. This
is realized more easily for the weighted RSOS paths where the configura-
tions with many clusters have the largest probabilities. For a uniform dis-
tribution of RSOS configurations, as in the DPM, one has to further
increase the value of the fugacity to reach the critical point. This pheno-
menon is the rule rather than the exception, the special transition is the
result of the enhancement obtained taking z > 1. This can be seen in the
O(n) model ( − 2 [ n < 1) (26–28) or at the collapse transition at the G

point. (51–53) The fact that in the RPM one is already at the special transition
point (zc=1) is probably a result of the special role played by the bound-
aries in our model (see Section 3).

Let us also observe, see (36) and (38), that for z < 1 as well as z > 1,
the number of clusters increases with the fugacity. This is what one expects
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if the conjecture (28) is correct. From (27) the pressure can be calculated
for z > 1 as a function of r. We find,

p=ln 11 − r

1+r
=1+2r

1 − 2r
2 % 2r3(1+3r2+O(r3)). (39)

This is an increasing function of r which is yet another indication of the
validity of the conjecture. Notice also that for small densities the pressure is
not proportional to r but to r3.

5.3. The Cluster Ensemble at Criticality

The critical behavior at a special transition is governed by a single
exponent, the cross-over exponent f. (25) We expect,

OkP ’ ˛n(z − zc)1/f − 1 (z > zc)
nf (z=zc)
(zc − z)−1 (z < zc)

. (40)

Moreover, the exponent of the second moment should be twice that of the
first,

Ok2P−OkP2 ’ n2f (z=zc). (41)

Following Polyakov, (54) we expect the following scaling form of the
cluster distribution function near the critical point,

Pn(k)=
1

OkP
f(k/OkP). (42)

The large x behavior of f(x) is related to the same exponent f, (55)

lim
x Q .

f(x) ’ x se−axd

, d=
1

1 − f
. (43)

The small x behavior of f(x) is related to the large n behavior of the
probabilities Pn(k),

lim
x Q 0

f(x)=bxh, lim
n Q .

Pn(k)=b
kh

OkP1+h
. (44)
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For the DPM (48) the scaling function f(x) (56) has the following simple
expression,

f(x)==2
p

x exp(−x2/2), (45)

from which we read off that f=1/2 and h=1. In our model the number
of clusters, calculated from (38), is equal to,

OkP=
2n

`3
`z − 1, (46)

from which we get f=2/3 (see Eq. (40)). We have also obtained the
average number of clusters for any system size and z=1,

OkP=
1
3
1D

n − 1

j=0

(2j+1)(3j+4)
(j+1)(6j+1)

− 12 . (47)

This expression was obtained by showing that it satisfies the same recursion
relation and initial conditions as its defining equation,

OkP= C
n

k=1
kPn(k), (48)

with (28) substituted for Pn(k). Using (48) one can derive (47) by using an
algorithm from Zeilberger which is conveniently implemented in a
Mathematica package by Paule and Schorn. (57) The result (47) was tested in
Monte Carlo simulations up to system size n=2048. From (47) we obtain
the large n behavior of OkP,

OkP %
C(1/3) `3

2p
(2n)2/3 (n Q .), (49)

in agreement with the second relation in (40). The last of the relations of
(40) is a consequence of (36). The fact that all the scaling relations (40) are
satisfied should not be taken for granted since our calculations are based
on the conjecture (28).

For the fluctuations of the cluster distribution we found numerically,

Ok2P−OkP2 % 0.659(1) L4/3 − 0.73(1) L2/3. (50)
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Fig. 10. The scaling function f(x) obtained for L=600.

The small x behavior of the scaling function (42) can be determined
using (44) and we find,

f(x) % 3 1C(1/3) `3

2p
23

x, (51)

which implies h=1. Finally we have determined numerically from the
conjecture (28) the scaling function (42), see Fig. 10.

5.4. f=2/3 and Conformal Invariance

For isotropic systems (for DPM this is not the case), and for surface
transitions which occur through enhancement, the crossover exponent is
related to the bulk and surface scaling dimensions, (25, 27)

f=(1 − Ds) n=
1 − Ds

2(1 − Db)
, (52)

The exponent Ds is related to the two-point contact correlation function
exponent on the boundary of the halfplane. The bulk correlation length
exponent n enters in the expression of f because of standard finite size
scaling arguments (one uses (41)). Eq. (52) can be used for the O(n) model
( − 2 [ n < 1) and one obtains f=1/2 since Ds=Db, (27) or for the collapse
transition at the G point where one obtains f=8/21 (52, 53) since Db=1/8
and Ds=1/3. (59, 58)

22 de Gier et al.



In our model, the susceptibility given by (50) (see also (41)) is related
to the two-point contact correlation in a halfplane. This can be understood
by looking at Fig. 9. The two sides of the rectangle can be aligned with the
bottom edge in a larger horizontal segment which for large L becomes the
line which borders the halfplane. This gives the factor 1 − Ds in (52). What
is more obscure in the case of the RPM, is the finite size scaling factor n. In
our case there is no enhancement factor and no simple way to take the
system away from criticality in order to define n. If we choose to ignore n

we have

f=1 − Ds, (53)

from which we derive Ds=1/3 which is one of the known surface scaling
dimensions. (60)

6. AVALANCHES

In the last sections we have considered properties of the stationary
state. Here we are going to study the response of the system to small
perturbations around the stationary state. We are therefore going to inves-
tigate the production of avalanches and show that our model exhibits SOC.

In order to study avalanches we consider the following processes in
discrete time (see Section 2). In the stationary state let a tile from the
rarefied gas fall on the site i with probability pi=1/(L − 1) and count how
many tiles T are released in the process. This number is zero if the tile is
reflected, − 1 if it is adsorbed and is a positive odd number if the falling tile
triggers desorption. Repeating the process many times we can measure the
probability R(T, L) to observe T tiles for a system of size L. This PDF can
be computed from the known transition rates and the conjectured proba-
bility distributions of RSOS configurations.

Studying systems of different sizes L, we were led to the following
conjecture (conjecture V) for the probability Pa(L)=R(−1, L) to have an
adsorption process and Pd(L)=1 − R(−1, L) − R(0, L) to have a desorp-
tion process,

Pa(L)=
3L(L − 2)

4(2L+1)(L − 1)
, Pd(L)=

L − 2
L − 1

− 2Pa(L). (54)

This conjecture was checked up to L=18. The fact that one is able to
obtain simple expressions for properties of the system away from equilib-
rium is remarkable since it suggests that the methods used to prove some of
the conjectures for alternating sign matrices could be extended to time
dependent properties.
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Using the expressions for Pa(L) and Pd(L) we conclude that in the
large L limit the average number of tiles OTP observed in desorption
increases to a maximum value of 3/2. This implies that, on average, there
are few tiles desorbed. We remind the reader that in Section 4 using a
completely different argument we obtained the same asymptotic value for
OTP. In order to analyze the properties of the avalanches, it is convenient
to write T=2v − 1, (v=1, 2,...) and to consider v as the size of the ava-
lanche. Given the occurrence of an avalanche, its size v is distributed
according to the PDF,

S(v, L)=
R(2v − 1, L)

Pd(L)
. (55)

If the PDF of tiles presents a long tail, i.e., if one has SOC, finite size
scaling theory (FSS) (4) suggests the following form for this PDF,

S(v, L)=v−yF(v/LD). (56)

One way to get the exponents of the FSS function is to consider the
moments, (61)

OvmP= C
v=1

vmS(v, L) % A(m) Ls(m), (57)

for which one expects,

s(m)=˛0, m < y − 1
D(m+1 − y), m > y − 1

. (58)

Table II. Avalanche Exponents s(m)

L0m 3 4 5

6 1.31250 2.81250 5.81250
8 1.14050 2.42898 4.59306

10 1.05707 2.25429 4.06439
12 1.00985 2.15976 3.78047
14 0.98066 2.10312 3.60721
16 0.96159 2.06682 3.49219
18 0.94867 2.04244 3.41113

. 0.91830 1.98162 3.02038
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Since OTP=3/2, one has s(1)=0 and A(1)=5/4. In order to compute
the moments, we have used the exact values of S(v, L) for L up to 18 and
VBS approximants. (62) For m=1.5 one obtains s(1.5)=0 with A(1.5) %

1.745. For m=2, s(2) is hard to determine suggesting that the dispersion
(second moment) diverges logarithmically. In Table II we give the estimates
and extrapolations for the exponents sL(3), sL(4), and sL(5), where

sL(m)=L
OvmPL −OvmPL − 1

OvmPL − 1
. (59)

These results suggest that s(m)=m − 2 for m \ 2 (with logarithmic
corrections close to m=2). If this is indeed the case we conclude that D=1
and y=3. Because of crossover effects one cannot preclude small changes
in the values of these two exponents. The value D=1 was to be expected
since L is the single characteristic length in our system. A consistency check
was done assuming D=1 in (56) to see for which value of y one finds a
data collapse for the scaling function F(v/L). Since we have data up to
L=18 only we cannot expect a precise value neither of y nor of F.
Nevertheless as shown in Fig. 11, a data collapse is visible for y=3.2, in
agreement with the value y=3 mentioned earlier. We conclude that the
PDF of tiles shows long tail and that therefore our model is in the SOC
class.
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Fig. 11. Avalanche scaling function F(v/L). The data are obtained for v > 1 and
L=8,..., 18.

The Raise and Peel Model of a Fluctuating Interface 25



7. THE INTERFACE MODEL AWAY FROM THE TEMPERLEY–LIEB

RATES

In this section we study the interface model described in Section 2 for
adsorption rates u different from 1. This study is interesting not only
because we expect the physics to be different but also from a theoretical
point of view. Changing the value of u, one perturbs the LCFT in a nonlo-
cal way and it is not clear what is the nature of the phases one obtains. In
principle one can obtain phases that are scale invariant but not confor-
mally invariant. Such a scenario was not yet seen, as far as we know, in
other physical systems.

Let us forget for a moment that we know what happens at u=1. We
will try to reason what might occur for general u using physical considera-
tions. One has to keep in mind that the RSOS paths are confined to a
triangle and this geometry might have consequences for the phase struc-
ture. At u=0 the system is not critical. The stationary state (energy zero)
corresponds to the substrate and the first degenerate excited energy level
corresponds to having a tile on top of the substrate. This energy (energy
gap) is equal to 2 (corresponding to the rate given by Eq. (2)), and is L − 1
times degenerate since the tile can be desorbed from L − 1 sites. No ava-
lanches are produced in the substrate.

If one slightly increases u the energy gap also changes slightly (in fact
it decreases), the degeneracy of the first level is lifted and the first Brillouin
zone appears. This is the massive phase I of the model. In this phase one
expects the stationary interface to be composed mainly of terraces, the
average height Oh̄P and the density of clusters should stay finite in the
thermodynamic limit. The interface is smooth in this phase and the ava-
lanche distribution should not show a long tail.

Increasing the value of u over a critical value uc, 1 the density of clus-
ters should vanish and Oh̄P should increase algebraically in L, the interface
being rough. We expect this phase to be massless and the probability dis-
tribution of the avalanches to show a long tail, therefore we will call this
phase the SOC phase. Invoking what we know about the physics at u=1
where the interface is marginally rough, one might argue uc, 1=1.

If u becomes larger than a critical value uc, 2 one expects a second
massive phase that we denote by II. Let us explain why. It is useful to con-
sider instead of u its inverse w=1/u as a variable and to take w < 1. We
redefine the time scale such that one has a rate 1 for adsorption and w for
desorption. At w=0, the only RSOS path entering the stationary state is
the one corresponding to the edges of the triangle of height L/2. In this
configuration there is one cluster which contains the maximum number
of tiles and Oh̄P=(L − 2)/8. Like for u=0, for w=0 we do not have
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Fig. 12. Expected phase diagram

avalanches, this time because we do not have desorption. The first excited
state which corresponds to the configuration with one tile less than in the
stationary state, has an energy equal to 1 (corresponding to the adsorption
rate) and is degenerate. It turns out that the spectrum of the Hamiltonian
(including degeneracies!) at w=0 is identical up to a factor 1/2 to the
spectrum of the Hamiltonian at u=0. This observation deserves a more
detailed explanation which we are not going to give here. For small values
of w, the L − 1 degeneracy of the first energy level is lifted giving rise to the
first Brillouin zone. Increasing the value of w we span the massive phase II
up to a critical value wc, 2=1/uc, 2. In this phase, Oh̄P is of the order L and
the density of clusters is zero.

To sum up, according to this scenario, illustrated in Fig. 12, one
expects two massive phases, one massless phase and two critical points uc, 1

and uc, 2.
To check this scenario we have limited ourselves to finite size scaling

studies (FSS) to find out when a system is gapless and to determine the
dynamic scaling exponent z. Unfortunately analytical methods can be used
for u=1 only. We have diagonalized numerically the Hamiltonian up to
L=16 and have determined E1(u, L) and E2(u, L), the energies of the first
and second excited states as functions of u and L (or of w and L). From
our experience, when dealing with nonlocal Hamiltonians, FSS methods
have some times convergence problems and can be efficient in some cases
and not in others.

At u=1 it is known (2) that,

LE1(1, L)=2pv+o(1), LE2(1, L)=3pv+o(1), (60)

where the sound velocity v=3 `3/2. We will first assume that, like for
u=1, in the whole SOC phase the dynamic exponent z=1. In Figs. 13 and
14 we have plotted the values of LE1(u, L) respectively LE1(w, L) for
various number of sites. If one would have a single critical point at
u=w=1 (this is not our scenario) one would expect crossings for values of
u and w close to 1. The values of u and w for which one obtains crossings
for various lattice sizes should converge to 1 for large L. This is not at all
what one sees. We notice that there are two crossings at 0.5 and 0.85 in the
u domain. The second crossing might well converge to 1. There are also
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Fig. 13. Scaled E1 as a function of the adsorption rate u for L=8, 10, 12, 14, and 16
(the smaller systems give smaller values for u=1). The curves are a guide to the eye only.

two crossings in the w domain, at 0.02 and 0.13. The data suggest, as
expected two massive phases, one for u < 0.5 and another one for w < 0.02.
What happens in between is less clear. Taking into account that we only
have results for small systems, all we could do were some consistency
checks.
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Fig. 14. Scaled E1 as a function of the adsorption rate w for L=10, 12, and 14 (the smaller
systems give smaller values for w=0.2). The curves are a guide to the eye only.
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Fig. 15. Proposed phase diagram.

One possibility is that in the whole domain u > 0.5, w > 0.02 one has a
massless phase with z=1. To investigate this possibility we have checked
using different extrapolation methods if for a given value of u (respectively w)
the quantities LE1(u, L) converge for large L. For u > 0.7 and w close to 1
the data are compatible with a massless phase with z=1, although the
convergence is less clean than for u=1 (the extrapolated values are far
away from the value for L=16). However, from the numerics we cannot
exclude the possibility that we only have z=1 at u=1 and a different
value, albeit very close to 1, elsewhere. In the remaining domain it is hard
to make any clear statement because of convergence problems. This picture
invalidates already part of our scenario since u=1 is in the middle of a
massless phase and thus cannot correspond to uc, 1. If that is the case, the
phase diagram of Fig. 12 should be replaced by Fig. 15.

Can we conclude that in the domain where we have z % 1 we also have
LCFT? This possibility can be easily checked looking at the ratio
E2(u, L)/E1(u, L) for large values of L. The reason we are looking at this
ratio is the following one. Because of the universality of the amplitudes in
LCFT, see (60) where now the sound velocity v can be a function of u, this
ratio should have the value 3/2 independent of u in the whole domain of
the SOC phase. In a massless phase which is not described by a LCFT this
ratio can have any value (no universality). On the other hand, in the
massive phases this ratio should be equal to 1 since the second energy level
belongs to the same Brillouin zone as the first energy level.

In Table III we give the values of the ratios for different values of u
and L as well as (when possible) the extrapolated values for large L. One

Table III. Ratio E2/E1

L0u 0.01 0.3 0.9 1.0 1.111 1000

8 1.068015 1.422562 1.419503 1.390377 1.355468
10 1.057506 1.442180 1.462111 1.425500 1.381065 1.11059
12 1.047632 1.439921 1.488372 1.446044 1.393992 1.11237
14 1.039483 1.427343 1.506046 1.459091 1.400681 1.11164
16 1.032983 1.409821 1.518746 1.467896

. 1.00691 – 1.629253 1.500120 1.415755 –
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notices that, as expected, for u=1 one gets the value 3/2. For u=0.01 (in
the first massive phase) the extrapolated value is, as expected 1. For u=0.3
(also expected to be in the massive phase I, the ratio first increases with L
and then decreases, probably toward the value 1. In the second massive
phase (u=1000), the values of the ratios first increase (from L=10 to
L=12) and then decrease (from L=12 to L=14). This makes any
extrapolation procedure meaningless and for this reason we didn’t give a
value for L=. in Table III. Nevertheless, one can see that for u=1000,
the three values of the ratio are close to 1 (the expected value). These
observations provide a supplementary check for the existence of the two
massive phases.

We now come to the most interesting result of our analysis. For
u=0.9 and 1.111, assumed to be in the SOC phase, the ratios do not con-
verge to the value 1.5. This implies that although one is scale invariant
(z close to 1) one is not conformally invariant.

To conclude, although based only on limited FSS studies, our results
suggest that changing the value of the rates from their Temperley–Lieb
values gives a phase diagram with two massive phases and a massless phase
with a nontrivial structure. There is one point (u=1) described by a LCFT
and around this point one has a domain, of a size which is not well known,
where one stays scale invariant but one doesn’t have LCFT. Hopefully
Monte-Carlo simulations will clarify this picture.

8. CONCLUSIONS

The Hamiltonian of the Temperley–Lieb loop model (TLLM) defined
in the space of link patterns for q=exp(ip/3) (see Eq. (7)) is an intensity
matrix giving the time evolution of a stochastic process. As shown in ref. 60
its spectrum is given by the characters of a c=0 LCFT. The same Hamil-
tonian corresponds to a sector of the XXZ quantum chain with quantum
group boundary conditions. (39) The first motivation in our study was to
see the specific features of a stochastic model in which one has LCFT.
Mapping the link patterns into RSOS configurations (see Section 3) we
get a model of a fluctuating interface: the raise and peel model (RPM)
described in Section 2 for u=1. The main observation is that this model is
simple and that the study of its physics is very interesting. This was a plea-
sant surprise. The physics is not so transparent for other stochastic models
related to extensions of the TLLM. (7, 63)

A particular feature of the RPM is that the PDF which gives the sta-
tionary distribution of the RSOS configurations can be understood in
terms of an enumeration of fully packed loop (FPL) configurations on a
rectangle for which one side plays a different role than the other three. This
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is one of the conjectures (7, 20) on which this paper is based. Accepting this
conjecture which was checked for small system sizes, one concludes that the
‘‘far away from equilibrium’’ stationary state of the one-dimensional RPM
is in fact a two-dimensional equilibrium distribution.

This is not the end of the story. The FPL configurations can be
mapped into the ice model on a rectangle with domain wall boundary
conditions on three edges and alternating arrows on the fourth (see Section 3).
The boundary conditions induce highly nonlocal effects in the bulk. One
effect of the boundary conditions is that one has phase separation. (21) It is
not obvious to see such a phase separation if one looks at the RSOS interface.

The various aspects of ice model with special boundary conditions are
related to the ‘‘The many faces of alternating-sign matrices’’ (22) to which,
we think that the RPM has added a useful new one. For example, the
RPM model allows for easy Monte-Carlo simulations in order to obtain
correlation functions, which are much harder to get for the other ‘‘faces’’ of
the alternating sign matrices.

We now sum up the main results we have obtained about the physical
properties of the RPM for u=1. In Section 4 we show that the average
height and width of the interface increase logarithmically with the system
size indicating that the interface is only marginally rough, 3/4 of the inter-
face being covered by terraces.

Based on a conjecture for the expression of the probability to have k
clusters (k+1 contacts of the interface with the horizontal line) (49) for a
system of size L and introducing a fugacity (enhancement parameter) z

related to the number of contacts, we have derived in Section 5 the inter-
face tension as a function of z. An important result of this paper is that
there is a special surface transition at z=1, separating a phase (z < 1) with
a finite number of clusters (density zero) from a phase (z > 1) with a finite
density of clusters. This implies that no enhancement (z > 1) is needed to
obtain the special surface transition. (25) This fact which is certainly related
to the unusual role of the boundaries in the FPL model, is interesting for
two reasons. Firstly we are not aware of any model in which one obtains a
special transition without enhancement. Secondly, the RPM is related to
the dense O(1) model (q=exp(ip/3) in Eq. (7)). The common lore (27) is
that the ordinary O(n) model can have a special transition with a finite
enhancement for − 2 [ n < 1 only. We not only have the surface transition
but we get it without enhancement. Various scaling laws have been checked
and the crossover exponent f=2/3 was obtained. This exponent also gives
the large L behavior of the susceptibility related to the two-point contacts
correlation function. This correlation can be obtained for example by using
Monte-Carlo simulations in the RPM. It would be much more difficult to
obtain it directly in the FPLM.

The Raise and Peel Model of a Fluctuating Interface 31



In Section 6 we have studied the SOC properties of the RPM showing
that the avalanches of tiles produced by desorption have a PDF which, for
large systems sizes, has a finite average (as opposed to sand pile models)
but a divergent dispersion.

In Section 7 we have studied the RPM for u different from 1. No
connections with FPLM or with integrable systems are known in this case.
For small and very large values of u the system is massive. Finite size
scaling studies suggest that around u=1 the dynamic scaling exponent z
has a value closed to 1 (for u=1 one has z=1) but that conformal
invariance is lost. Such a scenario was not seen in other models.

The list of open questions which should start with the possible physi-
cal applications of the model is too long to be written. Progress in combi-
natorics (to prove the conjectures) and efforts to obtain analytic expres-
sions for the correlation functions are obviously required. We assume that
the first results which will push forward the understanding of the model
will come from Monte-Carlo simulations.

APPENDIX A. PHYSICAL INTERPRETATION OF THE

ASYMPTOTICS OF AV
2n+1

We now show that the surface contribution to the asymptotics of
AV

2n+1, given in (14), has the interpretation of a probability. To see that we
compare (14) to the asymptotics (64) of the number AL+1

(65, 66) of six-vertex
configurations on the (L+1) × (L+1) square with domain wall boundary
conditions. This expression does not contain a surface term,

ln AL+1=s0(L+1)2 − 5
72 ln L2+O(1). (61)

We stress that a surface term does appear when one considers weighted
configurations of the six-vertex model. (21)

To understand the meaning of the surface contribution in (14) we use
the FPLM. Requiring horizontal symmetry for FPL diagrams on a square
implies that a loop segment runs along the horizontal symmetry axis and
also that the left and right boundary layers are fixed, see Fig. 16. The
number AV

L+1 thus counts all FPL diagrams on the lower (or upper) rec-
tangle of the right hand side picture of Fig. 16.

The probability that the horizontal symmetry axis of an arbitrary FPL
diagram on the square is covered by a loop segment can now be easily
calculated. Using (14) and (61) we find,

(AV
2n+1)2

A2n+1
’ 11

2
e−s0 22n

(n Q .), (62)

32 de Gier et al.



→

Fig. 16. Fixed edges for horizontally symmetric FPL diagrams.

where s0 is the entropy per site given in (14). Note that (62) is a product of
probabilities in which the value 1/2 is screened by a factor e−s0 due to bulk
effects. The probability in (62) can be interpreted as a string expectation
value (see, e.g., ref. 67).

The surface contribution in (14) therefore has the interpretation of a
probability. It arises due to the boundary with the alternating arrows in
Fig. 4, and not from the domain wall boundaries on the sides and bottom.
The fact that the leading behaviour in (62) is purely exponential and does
not contain an algebraic factor is very surprising for the following reason.
The probability that the first edge of the horizontal symmetry axis is drawn
is known as a particular case of the refined alternating sign matrix
conjecture (41) which meanwhile is proved. (24, 42) We denote this probability
by p1 and it is given by,

13n − 1
n − 1

2 (3n+1)! (4n+1)!
(n+1)! (6n+1)!

% = 2
3pn

, (63)

which is algebraic. In the probability (62) that the entire horizontal sym-
metry axis contains a loop segment, the algebraic dependence has disap-
peared and is transformed into a screening factor of e−s0 per edge.
A further amusing point is that for n=1, (62) gives an esitmate of 0.2798...
for the entropy per site which is already very close to its exact value
s0=0.2616... .
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